Skip to content
Scan a barcode
Scan
Hardcover The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser Book

ISBN: 0195367898

ISBN13: 9780195367898

The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser

Select Format

Select Condition ThriftBooks Help Icon

Recommended

Format: Hardcover

Condition: Very Good*

*Best Available: (ex-library)

$23.49
Save $25.50!
List Price $48.99
Almost Gone, Only 1 Left!

Book Overview

Mathematicians call it the Monty Hall Problem, and it is one of the most interesting mathematical brain teasers of recent times. Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, always choosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In...

Customer Reviews

5 ratings

A Detailed Analysis of an Intriguing Brain Teaser

Believe it or not, this entire book is on the Monty Hall problem! The author, a mathematics professor, has analyzed this fascinating brain teaser from a variety of angles. After discussing the problem's history, he presents various attempts that have been made to understand it. The earlier attempts, including those by Marilyn vos Savant, tend to focus on logical arguments in order to arrive at the correct solution. But in order to solve the problem with mathematical rigour, the author uses some of the tools of his trade such as conditional probability and Bayes' Theorem. But that's not all. He also discusses a series of variants to the problem and proceeds to solve those as well. Finally, psychological and philosophical issues are also presented, partly in an attempt to understand why the human mind has been shown to have so much difficulty in solving this problem. The writing style is clear, friendly and authoritative, although some of the unfortunate editorial errors that the book contains may contribute towards slowing down a reader's attempts at following some of the author's arguments. Regarding accessibility, general readers can learn much from a good part of the main text because of the many clear explanations; however, several sections are fairly heavy with mathematics, a few of which can be rather challenging. Consequently, although anyone with an interest in this problem can benefit greatly from reading this book, math and science buffs are likely to glean the most out of it.

A lively review of basic math problems and philosophy alike

THE MONTY HALL PROBLEM: THE REMARKABLE STORY OF MATH'S MOST CONTENTIOUS BRAIN TEASER follows one of the most interesting mathematical brain teasers of modern times, and uses a surprising minimum of math concepts in the process. Any interested in puzzle challenges - which ranges from college-level libraries strong in math to general-interest holdings - will find this a lively review of basic math problems and philosophy alike.

Rosenhouse could have reached for the AK 47 but instead he wrote a book!

Jason Rosenhouse has written what is a witty and informative book on the remarkable Monty Hall problem. Never has such a simply stated problem caused so much anger, confusion and irritation but so little understanding. Anyone who knows the problem will have gone through all the phases so amusingly described by Rosenhouse - denial, anger, bargaining, depression and acceptance. The problem is named "the Monty Hall problem" because of its similarity to scenarios on the game show Let's Make a Deal, but was brought to nationwide attention by her column in Parade magazine. Vos Savant answered arguing that the selection should be switched to door #2 because it has a 2/3 chance of success, while door #1 has just 1/3. This response provoked letters of thousands of readers, nearly all arguing doors #1 and #2 each have an equal chance of success. A follow-up column reaffirming her position served only to intensify the debate and soon became a feature article on the front page of The New York Times. Among the ranks of dissenting arguments were hundreds of academics and mathematicians. Now the heat that that this problem has generated is itself an intriguing phenomenon. According to Wikipedia Vos Savant is apparently a relative of physicist Ernst Mach and wife to the inventor of the artificial heart (Jarvik). She was listed in the Guinness Book of Records at some stage as the person with the highest IQ. She is a long standing columnist for Parade magazine which, with all due respect to that august magazine, is not exactly something you'd associate serious mathematical discourse. Check it out for yourself: [...]With that background and being a woman I think some people in the mathematical community actually played the woman rather than the problem and ultimately paid the price of being proved wrong in a rather ignominious fashion. I bet the people concerned don't put it on their CVs. Because this problem is so simple to pose it seems accessible to professionals and amateurs alike. An amateur does not attempt to venture a public opinion on the Riemann hypothesis but the Monty Hall problem is something the man in the street feels he can offer an opinion on. Suffice it to say that probability is hard, and it seems we may not be built to intuitively perform accurate calculations be they classical or Bayesian. When I first came across this problem probably over 10 years ago I solved it along the lines of page 54 of the book (an exhaustive enumeration of cases where the goats are distinguished ) which seemed to me the most basic way to do it given that many combinatorial problems can be solved by applying appropriate labeling. I was surprised by Rosenhouse's classification of this approach in "other approaches" as I thought it was the obvious way to do it. Just goes to show how wrong you can be. The book does a good job of teasing out Bayesian theory and much more. Rosenhouse takes the basic Monty and like all good mathematicians he fiddles with the a

An Important Problem

The "Monty Hall Problem" by Jason Rosenhouse is currently the best coverage of this important problem. He covers the version of the problem as it was made famous in Parade by vos Savant, and also it numerous variations and generalizations, its history, its occurrence in various fields (psychology, philosophy, quantum theory), and he gives a rather extensive bibliography which will be of great use to the serious student. The depth of coverage varies depending on the topic. For example, the classical analysis is satisfyingly extensive, while the fringe areas (quantum Monty Hall, for example) are just touched upon, and then references are given in the bibliography. The chatty tone of the text is such that it probably should be categorized as a "mathematics for entertainment" book. And as such, Rosenhouse has allowed himself literary license that one might not normally expect in a math book. For example, we have to wait to until page 42 before "probability basics" are actually discussed . Douglas Adams allusions aside, it might have been better to have given at least the classical definition of probability somewhat earlier. The definition is further developed in pages 84 - 88 when he excellently discusses the classical, frequentist, and Bayesian concepts of probability. This section I consider one of the best in the book. Rosenhouse states that the book should be within the reach of any undergraduate math major. This is probably overkill. If you know what a binomial coefficient is and what it is used for, know the classical definition of a probability in terms of a sample space, and know how to sum simple series, then you should have no difficulties. The great Hungarian mathematician Erdos, as Rosenhouse and others note, was a "victim" of the Monty Hall problem. As Erdos did work in the field of combinatorial mathematics and probability, this is significant. However, it must be emphasized that Erdos never actually attempted to solve the problem -- which takes all of about 1 minute to do if one writes down the sample space -- and which would admittedly would have been less than trivial for Erdos...No, Erdos was a victim because his intuition refused to accept the result, until somebody did a computer simulation and verified it for him. Hopefully, with the influence of this book (and others like it), this type of problem will find its way into high school textbooks so that future students of probability will develop a proper intuition. Since this is a book that stresses math enjoyment, as mentioned earlier, Rosenhouse is allowed considerable license. Still I will point out a few things that bothered me: On page 2, we are told that when physicist Paul Newman is interrupted in the 1966 Hitchcock move "Torn Curtain" by an impatient East German physicist who finishes off Newman's equations on a chalkboard that in reality "We don't finish off each other's equations." Well, physicists actually have done this, and rather famously so. So, quoting Max Bo

Don't Stick! Switch! And Why There Is a Difference

If you are old enough, you remember the sensation that the Rubik's Cube caused all the world over in 1980. No one is still alive that remembers the 1880 fad for the analogous two-dimensional "Fifteen Puzzle", which had fifteen numbered blocks within a four by four container and you were supposed to arrange them numerically. Mechanical puzzles can make storms like these, maybe because you can solve them over and over again, but it isn't often that word puzzles produce such fads. True, the Zebra Puzzle, a reasoning exercise consisting of fifteen seemingly unconnected statements that if regarded together the right way make a logical whole, was popular in 1962. Once you solved it, however, that was that. The Monty Hall Problem entered the public consciousness in 1990 and has been completely solved, but because the solution is so counterintuitive, it is still on the minds of many. One of those minds is that of Jason Rosenhouse, an associate professor of mathematics who has written _The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser_ (Oxford University Press). "My original idea for this book," he writes, was that an entire first course in probability could be based on nothing more than variations of the Monty Hall problem." Indeed, some of the chapters here are full-power mathematics, with unknowns x, y, and z, summation or conditional probability symbols, and complicated equations choked with parentheses within brackets, and more. Math phobics won't get far with such stuff, but there is enough other material here, along with different explanations of the basic puzzle, that will be of interest to anyone who likes recreational mathematics in even the slightest degree. People feel strongly that the answer the mathematicians have worked out is wrong and cannot be made right. Here is the problem: You are Monty's contestant, and he presents you with three identical doors. One hides a car, which you want, but the other two doors hide goats, neither of which you want. You pick a door, but instead of opening it, Monty opens one of the other two doors. Monty knows, of course, where the car is and where the goats are, and he only opens a door that shows you a goat; in the case where you happened to pick the door hiding the car, he chooses one of the two remaining doors randomly. So then you have one door open with a goat, and two doors unopened, including the one you picked. Monty now says he will give you a choice: you can stick to the unopened door you originally picked, or you can switch to the other unopened door. So, do you stick or switch? It is obviously a fifty-fifty chance, and like so many obvious things, it is also wrong. Rosenhouse goes on to show several ways of calculating the problem, and he is good at explaining why you are twice as likely to win if you switch. Essentially, Monty is giving you extra information when he opens that door with a goat behind it. You had a one third chance of picki
Copyright © 2024 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks® and the ThriftBooks® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured