The homotopy index theory was developed by Charles Conley for two- sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi- cal measure of an isolated invariant set, is defined to be the ho- motopy type of the quotient space N /N, where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent...