Skip to content
Scan a barcode
Scan
Paperback Organic Xenobiotics and Plants: From Mode of Action to Ecophysiology Book

ISBN: 9400734069

ISBN13: 9789400734067

Organic Xenobiotics and Plants: From Mode of Action to Ecophysiology

Select Format

Select Condition ThriftBooks Help Icon

Recommended

Format: Paperback

Condition: New

$169.99
50 Available
Ships within 2-3 days

Book Overview

Preface.- Part I. PRINCIPLES OF TRANSPORT, DEPOSITION AND UPTAKE 1. Plant Uptake of Xenobiotics. Introduction. Root uptake. Soil-root interactions. Transfer from roots to other plant parts. Soil-root interactions for ionic chemicals. Leaf uptake. Vapour or gas uptake from ambient air. Particulate deposition on plant surfaces. Other factors controlling plant uptake of organic chemicals. Accumulating species. Lipid composition. Foliage. Plant metabolism. Growth dilution. Conclusion. References; C. Collins et al.- 2. Haloorganics in temperate forest ecosystems: sources, transport and degradation. Introduction. Sources. Sea salt. Erosion and weathering. Fires. Volcanoes. Other natural biotic sources. Production by organisms. Intentional biotic production. Antibiotics. The role of chlorinated organic compounds in microbial metabolism. Unintentional biotic production. De-icing salt. Other anthropogenic sources. Transport within the ecosystem. Leaching. Volatilisation. Role of fire. Plant litter. Degradation. Abiotic degradation. Biotic degradation. Site budgets. Gaps in knowledge. References; N. Clarke et al.- 3. Semivolatiles in the forest environment. Introduction to polycyclic aromatic hydrocarbons. Properties of PAH. Sources of PAH. Spatial patterns and trends of PAH emissions and advection. The fate of PAHs in forests. Interaction of air masses with the forest canopy. Deposition of PAHs. Levels of PAHs in leaves and needles. PAHs in the litter and the soil. Deposition of PAHs. Levels of PAHs in soils. Effects of PAHs on ecosystem. References; C.A. Belis et al.- Part II. CASE STUDIES 4. A case study: Uptake and Accumulation of Persistent Organic Pollutants in Cucurbitaceae species. Introduction. The Cucurbitaceae family. POPs and Cucurbita species. DDT/DDE/DDD. Dieldrin and endrin. Heptachlor. Chlordane. Polychlorinated biphenyls. Dioxins and furans. Conclusions. References; A. Bitts?nszky et al.- 5. Trichloroacetic acid in the forest ecosystem. Introduction. Properties of Trichloroacetic acid and its occurrence in the environment. Plants and TCA. Physiological effects. The role of the rhizosphere. Conclusions. References; M. Matucha, P. Schr?der.- 6. Persistent organic pollutants (POPs) in Switzerland related to long-range transboundary transport. Results of a case study. Introduction. Material and Methods. Results and Discussion. Short chain chlorinated paraffin's (CFCs) and Chlorobenzenes. Organochlorine pesticides (OCPs). Hexachlorocyclohexanes (HCH). Polychlorinated biphenyls (PCBs). Polycyclic aromatic hydrocarbons (PAHs). Polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs). Conclusion. References; R. Herzig et al.- Part III. POLLUTANT DEGRADATION AND ECOSYSTEM REMEDIATION FROM ENZYMES TO WHOLE PLANTS 7. New perspectives on the metabolism and detoxification of synthetic compounds in plants. Introduction. The plant xenome and its organization. Detoxifying enzymes. Phase 1 enzymes. Oxido-reductases. Phase 1 enzymes- hydrolases. Phase 2 enzymes - Glutathione transferases (GSTs). Phase 2 enzymes- Glycosyltransferases. Phase 2 enzymes- Malonyltransferases. Phase 3 transport processes- ABC transporter proteins. Phase 4 - Further processing of xenobiotics. Up-regulation of the xenome and xenobiotic resistance. Conclusion. References; R. Edwards et al.- 8. Using plants to remove foreign compounds from contaminated water and soil. Introduction. Phytoremediation of organics. Selection of plants for phytoremediation. The applicability of phytoremediation. Sulphonated aromatic compounds in wastewater. Limits of microbial degradability. Potential of phytotreatment. Azo dyes in industrial effluent. Conventional dye treatments. Azo-dyes phytoremediation. Rhizodegradation. Phytodegradation. Hydrophobic compounds: phytoremediation of PCB-contaminated soils. Phytoextraction. Conclusions: phytoremediation trends for the near future. References; J.-P. Schwitzgu?bel et al.- 9. Biodegradation of Organic Xenobiotic Pollutants in the

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured