In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic convergence rates. They also describe an algorithmic framework based proximal splitting to solve these discrete problems on graphs.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.