1 Introduction.- 2 Model Selection and Evaluation.- 3 Linear Models.- 4 Decision Trees.- 5 Neural Networks.- 6 Support Vector Machine.- 7 Bayes Classifiers.- 8 Ensemble Learning.- 9 Clustering.- 10 Dimensionality Reduction and Metric Learning.- 11 Feature Selection and Sparse Learning.- 12 Computational Learning Theory.- 13 Semi-Supervised Learning.- 14 Probabilistic Graphical Models.- 15 Rule Learning.- 16 Reinforcement Learning.