By considering special exponential series arising in number theory, the authors derive the generalized Euler-Jacobi series, expressed in terms of hypergeometric series. They then employ Dingle's theory of terminants to show how the divergences in both dominant and subdominant series of a complete asymptotic expansion can be tamed. The authors use numerical results to show that a complete asymptotic expansion can be made to agree with exact results for the generalized Euler-Jacobi series to any desired degree of accuracy. This description may be from another edition of this product.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.