With this comprehensive guide you will learn how to apply Bayesian machine learning techniques systematically to solve various problems in speech and language processing. A range of statistical models is detailed, from hidden Markov models to Gaussian mixture models, n-gram models and latent topic models, along with applications including automatic speech recognition, speaker verification, and information retrieval. Approximate Bayesian inferences based on MAP, Evidence, Asymptotic, VB, and MCMC approximations are provided as well as full derivations of calculations, useful notations, formulas, and rules. The authors address the difficulties of straightforward applications and provide detailed examples and case studies to demonstrate how you can successfully use practical Bayesian inference methods to improve the performance of information systems. This is an invaluable resource for students, researchers, and industry practitioners working in machine learning, signal processing, and speech and language processing.
Format:Hardcover
Language:English
ISBN:1107055571
ISBN13:9781107055575
Release Date:July 2015
Publisher:Cambridge University Press
Length:445 Pages
Weight:2.25 lbs.
Dimensions:1.1" x 6.8" x 9.8"
Recommended
Format: Hardcover
Condition: New
$124.61
Save $4.39!
List Price $129.00
On Backorder
If the item is not restocked at the end of 90 days, we will cancel your backorder and issue you a refund.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.