Skip to content
Scan a barcode
Scan
Hardcover Advanced Calculus for Applications Book

ISBN: 0130111635

ISBN13: 9780130111630

Advanced Calculus for Applications

Select Format

Select Condition ThriftBooks Help Icon

Recommended

Format: Hardcover

Condition: Good

$12.49
Almost Gone, Only 1 Left!

Book Overview

The text provides advanced undergraduates with the necessary background in advanced calculus topics, providing the foundation for partial differential equations and analysis. Readers of this text... This description may be from another edition of this product.

Customer Reviews

4 ratings

Old, very dense, and difficult.

This book is definitely geared to the applied mathematics student; the topics in this book are strictly for pratical applications and not theory. It isn't too difficult but takes quite a lot of mathematical manipulation. Also, this book is quite old: to give you an idea, the first edition of this book was used by John Nash in his undergraduate calculus class in the early 1950s. Although many topics have been added in the 2nd edition, much of the material hasn't changed since its first publication in 1948. Nevertheless, you can still learn a tremendous amount from this book, even if you happen to be a 16 year old.

Good supplement to Mathematical Methods Courses

I've been using this book to supplement an intense course on mathematical methods of physics that I'm currently taking correspondence in Germany, and it's been a real help to me thus far. It doesn't seem to be super mathematical (in the pure theoretical sense), but it is most definitely useful for applications, particularly for physical problems. Anyone who has had the calculus I-III sequence at a mediocre American university, along with differential equations and linear algebra, should be able to make great use of this book. It's been 17 years since I finished my undergrad math degree, and I feel that this book is just my speed!

Great additional reference

This book helped me get a High Pass in Applied Mathematics here at the Thayer School of Engineering of Dartmouth College. It's not a great intro text to this material and it skips alot of details but it's a fantastic additional reference book.For example there is a solved problem of a wave function PDE, which involves Bessel functions. Earlier sections of the text refer to how the ODE's are solved by Bessel, which many books leave out.Later sections of the text contain an intriguing treatment of the Laplace transform.This book is not for beginners but is a good stepping stone to more advanced concepts such as the Calculus of Variations. Beyond this you are wise to consider additional texts such as Hildebrand's Methods of Applied Mathematics which contains a more rigorous section on C of V, Bender and Orszag's Advanced Mathematical Methods for Scientists and Engineers, Wunsch's Complex Variables, and even a good review on PDE's such as Haberman's Elementary Applied PDE's is not a bad idea if you are in a review situation like I was (having spent 8 yrs in Dot Com's and then back to grad school in engineering).

Solid Advanced Calculus text

This is a one of the best introductions to advanced calculus out there, in my opinion. Once you've read it, you'll have enough background to start work on serious PDEs and analysis. Further, the book has an rather extensive set of problems for the reader to work, with solutions provided.There are several flaws, however, which is why I gave it 4 stars. In particular, the first couple chapters are an excrutiating read. It was so boring, in fact, that I quit reading the book and shelved it for three years (math was just a hobby at the time). Once you get past those initial few series-choked chapters, the book picks up the pace quite a bit; the book actually becomes quite the page turner once you get to chapter 6 and for the rest of the text --- took only three weeks to soak up the last half of the book, and that without rushing (versus three years for the first fourth ;) ).This book is, however, an introductory text --- I'd say probably Junior level. Thus, many points are not explicitly proven. Calculus of variations, for example, only gets a couple pages, and as I recall, they only prove the necessity of d/dx(df/du') - df/du = 0, omitting any discussion of sufficiency: many other similar examples occur throughout the text. This shouldn't be a problem, however, as such issues are often discussed in the literature or in more advanced (graduate-level or advanced undergraduate) texts. Another potential problem is that the text is fairly old. As such, it doesn't address the use of numerical methods on computers, although it does discuss numerical methods (somewhat outdated ones at times, however, as reflected in the strong emphasis on series solutions thoughout). Personally, I didn't find this to be a problem; there are plenty of mathematical methods texts out there that address these issues, so let them handle it.So, overall, I'd say Hildebrand is a pretty good book if you're looking for a way to extend your knowledge of elementary calculus. After Hildebrand, you should do pretty well reading graduate-level texts, monographs and journal/conference proceedings, although the going might be pretty rough at first.
Copyright © 2024 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks® and the ThriftBooks® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured